Annuity Table: Overview, Examples, and Formulas

Julia Kagan is a financial/consumer journalist and former senior editor, personal finance, of Investopedia.

Updated July 11, 2024 Reviewed by Reviewed by Marguerita Cheng

Marguerita is a Certified Financial Planner (CFP), Chartered Retirement Planning Counselor (CRPC), Retirement Income Certified Professional (RICP), and a Chartered Socially Responsible Investing Counselor (CSRIC). She has been working in the financial planning industry for over 20 years and spends her days helping her clients gain clarity, confidence, and control over their financial lives.

Fact checked by Fact checked by Amanda Jackson

Amanda Jackson has expertise in personal finance, investing, and social services. She is a library professional, transcriptionist, editor, and fact-checker.

Part of the Series Annuity Definition and Guide
  1. Guide to Annuities: What They Are, Types, and How They Work
  2. What Is an Annuity?
  3. The Main Types of Annuities
  4. An Overview of Annuities
  5. Life Insurance vs. Annuity
  6. Difference Between IRA and an Annuity
  7. Best Age to Get an Annuity

Types of Annuities: Part 1

  1. Deferred Annuity
  2. Fixed Annuity
  3. Immediate Payment Annuity
  4. Indexed Annuity
  5. Individual Retirement Annuity

Types of Annuities: Part 2

  1. Joint and Survivor Annuity
  2. Ordinary Anniuity
  3. Qualified Longevity Annuity Contract

Calculating Present and Future Value

  1. Present Value Annuity
  2. Future Value Annuity
  3. Calculating Present and Future Value Annuities
  4. Annuity Table
CURRENT ARTICLE
  1. How Are Nonqualified Variable Annuities Taxed?
  2. How a Fixed Annuity Works After Retirement
  3. What Happens to an Annuity After You Die

Payouts, Distributions, and Withdrawals

  1. Selecting the Payout on Your Annuity
  2. Are Variable Annuities Subject to Required Minimum Distributions?
  3. How to Rollover a Variable Annuity Into an IRA
  4. Distribution Options for an Inherited Annuity
  5. Penalties for Withdrawing Money From Annuities
  6. Borrowing From an Annuity to Put a Down Payment

Benefits and Risks

  1. SPONSORED: How to Navigate Market Volatility While Saving for Retirement Sponsored
  2. The Whole Story on Variable Annuities
  3. Pros and Cons of Retirement Annuities
  4. Biggest Disadvantages of Annuities
  5. Risks of Annuities in a Recession

Saving money concept, Money stack growing

What Is an Annuity Table?

An annuity table is a tool for determining the present value of an annuity or other structured series of payments. Such a tool, used by accountants, actuaries, and other insurance personnel, takes into account how much money has been placed into an annuity and how long it has been there to determine how much money would be due to an annuity buyer or annuitant.

Figuring out the present value of any future amount of an annuity may also be performed using a financial calculator or software built for such a purpose.

Key Takeaways

What Is An Annuity?

How an Annuity Table Works

An annuity table provides a factor, based on time, and a discount rate (interest rate) by which an annuity payment can be multiplied to determine its present value. For example, an annuity table could be used to calculate the present value of an annuity that paid $10,000 a year for 15 years if the interest rate is expected to be 3%.

According to the concept of the time value of money, receiving a lump-sum payment in the present is worth more than receiving the same sum in the future.

Having $10,000 today is better than being given $1,000 per year for the next 10 years because the sum could be invested and earn interest over that decade. At the end of the 10-year period, the $10,000 lump sum would be worth more than the sum of the annual payments, even if invested at the same interest rate.

Annuity Table and the Present Value of an Annuity

Present Value of an Annuity Formulas

The formula for the present value of an ordinary annuity, as opposed to an annuity due, is as follows:

P = PMT × 1 − ( 1 + r ) − n r where: P = Present value of an annuity stream PMT = Dollar amount of each annuity payment r = Interest rate (also known as the discount rate) n = Number of periods in which payments will be made \begin&\text =\text\times\frac< 1 - (1 + r) ^ -n>\\&\textbf\\&\text = \text\\&\text =\text\\&r = \text\\&n = \text\end ​ P = PMT × r 1 − ( 1 + r ) − n ​ where: P = Present value of an annuity stream PMT = Dollar amount of each annuity payment r = Interest rate (also known as the discount rate) n = Number of periods in which payments will be made ​

Assume an individual has an opportunity to receive an annuity that pays $50,000 per year for the next 25 years, with a discount rate of 6%, or a lump-sum payment of $650,000. He needs to determine the more rational option. Using the above formula, the present value of this annuity is:

PVA = $ 50 , 000 × 1 − ( 1 + 0.06 ) − 25 0.06 = $ 639 , 168 where: PVA = Present value of annuity \begin&\text = \$50,000 \times \frac = \$639,168\\&\textbf\\&\text=\text\end ​ PVA = $50 , 000 × 0.06 1 − ( 1 + 0.06 ) − 25 ​ = $639 , 168 where: PVA = Present value of annuity ​

Given this information, the annuity is worth $10,832 less on a time-adjusted basis, and the individual should choose the lump sum payment over the annuity.

Note, this formula is for an ordinary annuity, where payments are made at the end of the period. In the above example, each $50,000 payment would occur at the end of the year, each year, for 25 years. With an annuity due, the payments are made at the beginning of the period in question. To find the value of an annuity due, multiply the above formula by a factor of (1 + r):

P = PMT × ( 1 − ( 1 + r ) − n r ) × ( 1 + r ) \begin&\text = \text \times\left(\frac\right) \times (1 + r)\end ​ P = PMT × ( r 1 − ( 1 + r ) − n ​ ) × ( 1 + r ) ​

If the above example were of an annuity due, its value would be:

P = $ 50 , 000 × ( 1 − ( 1 + 0.06 ) − 25 0.06 ) × ( 1 + 0.06 ) = $ 677 , 518 \begin&\text= \$50,000\\&\quad \times\left( \frac\right)\times (1 + 0.06) = \$677,518\end ​ P = $50 , 000 × ( 0.06 1 − ( 1 + 0.06 ) − 25 ​ ) × ( 1 + 0.06 ) = $677 , 518 ​

In this case, the individual should choose the annuity due, because it is worth $27,518 more than the lump-sum payment.

Present Value of an Annuity Table

Rather than working through the formulas above, you could alternatively use an annuity table. An annuity table simplifies the math by automatically giving you a factor for the second half of the formula above. For example, the present value of an ordinary annuity table would give you one number (referred to as a factor) that is pre-calculated for the (1 - (1 + r) ^ - n) / r) portion of the formula.

The factor is determined by the interest rate (r in the formula) and the number of periods in which payments will be made (n in the formula). In an annuity table, the number of periods is commonly depicted down the left column. The interest rate is commonly depicted across the top row. Simply select the correct interest rate and number of periods to find your factor in the intersecting cell. That factor is then multiplied by the dollar amount of the annuity payment to arrive at the present value of the ordinary annuity.

Below is an example of the present value of an ordinary annuity table:

n 1% 2% 3% 4% 5% 6%
1 0.9901 0.9804 0.9709 0.9615 0.9524 0.9434
2 1.9704 1.9416 1.9135 1.8861 1.8594 1.8334
3 2.9410 2.8839 2.8286 2.7751 2.7233 2.6730
4 3.9020 3.8077 3.7171 3.6299 3.5460 3.4651
5 4.8534 4.7135 4.5797 4.4518 4.3295 4.2124
10 9.4713 8.9826 8.5302 8.1109 7.7217 7.3601
15 13.8651 12.8493 11.9380 11.1184 10.3797 9.7123
20 18.0456 16.3514 14.8775 13.5903 12.4622 11.4699
25 22.0232 19.5235 17.4132 15.6221 14.0939 12.7834

If we take the example above with a 6% interest rate and a 25-year period, you will find the factor = 12.7834. If you multiply this 12.7834 factor from the annuity table by the $50,000 payment amount, you will get $639,170, almost the same as the $639,168 result in the formula highlighted in the previous section. The slight difference in the figures reflects the fact that the 12.7834 number in the annuity table is rounded.

There is a separate table for the present value of an annuity due, and it will give you the correct factor based on the second formula.

What Is an Annuity?

An annuity is an insurance contract that provides an income stream, typically during retirement. An annuity may be fixed, variable, or indexed. There are two phases: first, the accumulation (savings) phase, then, the payout (income) phase. The payout may be immediate or deferred.

What Is the Difference Between an Ordinary Annuity and an Annuity Due?

An ordinary annuity generates payments at the end of the annuity period, while an annuity due is an annuity with the payment expected or paid at the start of the payment period.

Can a Lottery Winner Use an Annuity Table?

A lottery winner could use an annuity table to determine whether it makes more financial sense to take their lottery winnings as a lump-sum payment today, or as a series of payments over many years. However, lottery winnings are a rare form of an annuity. More commonly, annuities are a type of investment used to provide individuals with a steady income in retirement.

The Bottom Line

An annuity table is a tool used mostly by accounting, insurance or other financial professionals to determine the present value of an annuity. It takes into account the amount of money that has been placed in the annuity and how long it's been sitting there, so as to decide the amount of money that should be paid out to an annuity buyer or annuitant.